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LETIER TO THE EDITOR 

Two-level systems: space curve formalism, Berry's phase and 
Gauss-Bonnet theorem 

R Dandoloff, Radha Balakrishnant and A R Bishop 
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, 
Los Alamos, NM 87545, USA 

Received I9 May 1992 

Abstract. We study the projective space representation of a general two-level system 
introduced by Feynman el oL This allows a mapping onto a space curve. Geometric phases, 
Berry's phase and its complementary phase are calculated. The relation with the Gauss- 
Bonnet theorem is discussed and an inequality for the Berry phase is derived. 

~ 

1 wo-level quantum systems are widely used in physics to model a variety of phenomena 
[l ,  21. The essential features of quantum mechanics can be discussed using two-level 
systems. The visualization, however, of the complex vector space is rather difficult, 
which makes the study of the geometry of quantum evolution non-trivial. On the other 
hand, a variety of nonlinear phenomena [3] and certain topological properties of unit 
vector fields [4] have been studied using a space curve formalism. This has led to new 
in sigh:^ for acme geom%:ic p:operties cf :he phase of the w--uef~~: ion.  

In the case of a two-level system, the Hilbert space is a real four-dimensional space. 
We will restrict ourselves here to normalized wavefunctions. In this case, the Hilbert 
space becomes S3. Feynman er a1 [ 5 ]  have noticed that in this case the Schrodinger 
equation may be written in the form of a three-dimensional vector equation: 

d r  
- = & A .  
d t  

where r is a unit three-dimensional vector with components: 

r ,=ab*+ba* r2=i(ab*-ba*) r,= aa*- bb*. (2) 

ThisrepresentsjusttheHopfmap S'+S'with ~ ( t ) = a ( f ) ~ ~ + b ( t ) ~ b a n d l a l ' + l b 1 2 = 1 ;  
and $b are the two eigenstates, corresponding to energies t h o ,  and -tho.. Here 2 is the projective space for our system. If the Hamiltonian is given by H = H,+ V 

and if we neglect V.. and Vbb, then the components of 6 are given by 

61 = ( v o b i  V b a ) / h  62 = i( vab - V b a ) / h  53 = 0.. (3 )  
Let us now concentrate on equation (1) on R'. As time evolves the tip of the unit 

vector r traces out a curve on the surface of a unit sphere with centre at the origin of 
~ i i e  courainare sysrcrn. wc may nuw ~iiirvuub-ci LUG ULHL VGLIVIS ii aiiu v DUW u i a ~  r, rt 
and b represent an orthonormal triad, n = (dr jdf )  ' 1drjdtl-l and b is such that r = n A b. 

t Permanent address: Institute of Mathematical Sciences, Madras 600 113, India. 
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The vectors n and b are tangent to the unit sphere; n is tangent to the curve traced 
out by r on the unit sphere. The three vectors r, n and b satisfy the following set of 
equations [ 6 ] :  

i= kn ri = -kr+ Tb b = -m. (4) ' 

If we introduce the Darboux vector . $ = ~ ( f ) r + k ( f ) b ,  equation (4) may be written in 
a more compact form: 

i = . $ n r  r i = . $ A l l  b = & h b .  

Equations (4) are the Frenet-Serret equations for a space curve, where T ( f )  is the 
torsion of the curve and k(  1 )  is its curvature; f is the length of the curve. For a cyclic 
evolution of our two-level system the tip of r traces out a closed curve on the top of 
the unit sphere. This closed curve is the spherical image [ 6 ]  of the space curve whose 
Frenet-Serret equations are given by equation (4). It is clear that the natural frame (n 
and b )  rotates around r with an angular velocity T ( s ) .  Thus as s increases from s = 0 
to s = s., the system develops a phase 

between (n ,  b )  and the corresponding non-rotating frame in this plane. Such a non- 
rotating frame could be defined by using the usual Fermi-Walker parallel transport 
along the curve of a vector A [ 8 , 9 ] ,  

-= DA' { k b x A } ' .  
ds 

Recently, Urbantke [ 2 ]  has shown that a phase change of a in I+) implies the rotation 
of the (n, b )  plane by an angle 2a.  Hence from equation (9, 4, =2a,  giving 

n = f  T(s)ds. (7) 1 
From the definition of 6, we have T ( S )  =&r. Using expressions (2) and (3). it is easy 
to show that 

(8) 
2 

~ ( s )  = - ( H ( s ) ) .  
h 

Hence 

a ='I ( H ( s ) )  ds. 
h 

Berry has shown that under adiabatic, cyclic evolution of certain parameters (in 

I+(T)) = e-'"I+(o)). (14) 

this case a and b) an initial state I+(o)) evolves to ) + ( T ) ) ,  where 

Here the accumulated phase a has a 'dynamical' as well as a 'geometric' part: 
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Comparing equations (9) and (15) we get 

Using equation (E), 

The first term is an ordinary integral over time, whereas the second term is an integral 
along a twisted curve, whose shape depends on the form of the time-dependent 
Hamiltonian. By simple calculation one can show that 

and 

so that our division of the phase into ‘dynamical’ and ‘geometrical’ coincides with that 
in [lo]. By parallel transporting the unit vectors r, n and b to the origin of a Cartesian 
coordinate system, we see that as the triad moves along the curve, their tips generate 
three curves on the unit sphere S2.  These are called tangent, normal and binormal 
indicatrices of the space curve. For cyclic evolutions, these will be closed curves. 

Using the Euler angle (e,+, $) representation of the Frenet-Serret equations, one 
can show that [9] 

r ds =cos e d++d$ 

and 

so that 

where th 

k2ds2= (de)2+sin2e(d+)2 

last term is the area bounded by the tangent indicatrix 
Stokes’ theorem. 

(17) 

i follows from 

The above result when used in equation (16) shows that the geometric phase y of 
a two-level system is a measure of the deviation of the torsion (or twistedness) of a 
space curve from a constant value 7.. In the quantum mechanical language, if the 
Hamiltonian H is time independent, then it implies that the mapping of the Schrodinger 
equation is to a space curve of constant torsion. This is because in general, 

This derivative will vanish if 6 is independent of time, which happens when H is 
independent of time, as seen from equation (3). For this case, the two terms on the 
right-hand side of equation (16) become equal and the geometric phase y uanishes. 
Note that even in the case of a constant torsion T. (i.e. constant-in-time Hamiltonian), 
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cyclical evolution of the system is still possible-in this case the vector r precesses 
around a constant 6. This is an example of the Aharonov-Anandan phase. 

From the definition of the Darboux vector, we have 

f’= k’(s)+~’(~) .  (18) 

From equation (3) we can easily verify that [’= (4/h2)(H)’. Hence 

4 
k’=i;i{(H’)-(H)’}. (19) 

Thus the above variance of the Hamiltonian is a measure of the curvature of the space 
curve. This is another independent geometric property, distinct from the torsion T. The 
expression for 6 shows that by considering a non-rotating frame defined in a way 
similar to the Fermi-Walker transport given in equation (a), i.e. [9] 

- ( ~ r x A ) ‘  
DA’ _- 
ds  

the (r, n )  plane rotates around b with an angular velocity k(s). This leads to a phase 
T T 

4 ~ =  [ k d s = ?  1 {(H’)-(H)’}”’ds 
J. n J. 

= i J “ A H d s = -  : loT A H d t  

where we have used equation (18). It is known that +2 is a measure of the length of 
the tangent indicatrix [6, lllt, i.e. a curve traced out by r on the unit sphere. On the 
other hand = I  T ( S )  ds, is a measure of the length of the binormal indicatrix [a]. 
Analogous to this latter case discussed earlier, for a cyclic evolution one can show 
that 4’ =I  k(s) ds is just the closed area bounded by the binormal indicatrix [9]. Let 
us consider now the tangent indicatrix of our space curve. It is generated by the tip 
of the radius vector r. The triad r, n and b may be considered as a moving triad along 
the tangent indicatrix-the element of length being now ds, = k dt, n being the tangent 
and b the normal to this curve; r plays the role of a binormal to the curve and a 
normal to the sphere. The three vectors satisfy the Darboux-Ribaucour equations [6]: 

i = n  ri=-r+k,b b = - k p  (22) 

where the overdot stands for d/ds, and kg is the geodesic curvature [61, k,= ~ / k  Let 
us now consider the following integral: 

$ k, ds, = loT Tdt = 4,. (23) 

The integral of the geodesic curvature k, along a closed curve is related to the area 
enclosed via the Gauss-Bonnet theorem [6]: 

f k,ds, = 2 v - ( I A  K dA. 

t In a somewhat different context Anandan and Aharonov [ I l l  have noticed that ( 2 I h ) A H  dl  is an element 
of Ienah along the trajectory in the projective Hilbert space. 
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Here K is the Gaussian curvature and jIA K dA is the curuatura integra of Gauss and 
dA is an element of area on S2. In our case K = 1 and we get again the expression in 
equation (17).  This is the Gauss-Bonnet theorem for a smooth closed curve. When 
the closed curve consists of N arcs of smooth curves making exterior angles 
e,, 0,. . . . , ON at the vertices where the arcs meet, equation (24) becomes: 

N 
k,ds ,+x & = 2 ~ -  K d A  

i - l  \ I A  

This is the general Gauss-Bonnet theorem and is a generalization of equation (17). 
Let us now again consider the example of a non-unitary evolution of a system 

which is subject to measurements [12] (a two-level system which is a subject to three 
measurements, which bring the system from a state I+,) to to and then back 
to I+,)). On the unit sphere these three states are represented by points 1, 2 and 3 and 
these points are connected by geodesics [ 121. Along a geodesic k, = 0 and consequently 
$ k, ds, = 0, contrary to the conclusion in [12] (taken in the context of a two-level 
system). For this case: 

Let us now turn our attention to  one inequality regarding Berry's phase. In general, 
the following inequality is always fulfilled: c23 T ~ .  Here we are considering again 
cyclic evolution of our system. If T is the period of the cyclic evolution the following 
inequality is also always fulfilled: 

Using the Cauchy-Schwarz inequality for the second integral in equation (26) we arrive 
at 

and equation (26) yields 

The integral on the RHS of equation (28) may be expressed in terms of Berry's phase, 
equation (16). Then inequality (28) becomes: 

Using [ 2 = 4 ( H z ) / R 2 = 4 E 2 ( t ) / f i 2  we get 

and finally we arrive at the following inequality for the Berry phase: 

~ J @ G - ( E ( t ) ) ) >  fly (31) 
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where now 

is the time average of E’ along the curve and ( E ( [ ) )  is the time average of E. 
In summary, by mapping the Schrodinger equation for a two-level quantum system 

to a classical vector equation for r (equation (4)), we have analysed the problem using 
a space curve formalism. We conclude the following. For a cyclic evolution of the 
quantum state, the tip of r traces out a closed curve on the unit sphere S2. It then 
becomes possible to identify two independent geometric quantities (phases) with this 
closed curve. The first is 2?r minus the area of the surface enclosed by the closed curve 
(which in turn depends on the torsioh of the space curve in R’) given by 4I = I  T ds. 
In the case when the closed curve consists of a sum of arcs the phase 4, is given by 
the integral over the torsion plus a sum of the exterior angles at the vertices where the 
arcs meet. Thus in general Berry’s phase is given by the area enclosed by the closed 
curve on S2, but the proper way to  get it is via the Gauss-Bonnet theorem, rather than 
Stokes’ theorem. Only when the curve is smooth, do both approaches give the same 
result. The second quantity is the length of this curve (which depends on the curvature 
of the space curve in R’) given by q52 = I k ds. The geometric phase derived by Berry 
is just the former phase, when the dynamical phase is subtracted out. Geometrically, 
it measures the deviation of torsion of the space curve from a constant value. (This 
deviation can be seen to arise essentially from the time dependence of the Hamiltonian.) 
The latter phase q52 is related to 5,’ d ~ [ ( H ~ ) - ( H ) ~ l l ’ ~ ,  measures the curvature of the 
underlying space curve, and appears to arise from the basic time-energy uncertainty 
principle of quantum mechanics. We have also established the relationship between 
the geometrical phases in two-level systems and the Fermi-Walker parallel transport. 

One of the authors (RD) would like to thank Darryl Holm for bringing to his attention 
reference [5]. 
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